Índice
- O Curso R
-
- Tutoriais
-
- Apostila
-
- 6. Testes de Hipótese (em preparação!)
- Exercícios
-
- Material de Apoio
-
- Área dos Alunos
-
- Cursos Anteriores
-
IBUSP
Outras Insitutições
Linques
Visitantes
Outras Insitutições
Um experimento hipergeométrico possui duas características principais, a primeira é que cada indivíduo pode ser considerado como um sucesso ou falha na amostra. Outro ponto, é que a amostra é selecionada aleatoriamente, com um número qualquer de indivíduos de uma população conhecida e finita, onde não há reposição em caso de falha ou sucesso.
A função tem o objetivo de mostrar a probabilidade de se ter sucesso em uma amostragem de uma população total e especifica conhecidas, ou seja, quais são as chances de sucesso em um determinado tamanho amostral, para isso serão fornecidas todas as possibilidades amostrais, pré definidas de acordo com o intervalo e o número máximo amostral desejados, onde uma amostra com 0 indivíduos represente o mínimo (0%), e uma amostra do tamanho da população total representa o máximo de chances de sucesso (100%).
(x,y)
x = tamanho da população total (todas as espécies)
y = tamanho da população especifica (espécie de interesse)
dhyper(x, m, n, k, log = FALSE)
Tamanho da população total, tamanho da população de interesse, intervalo de tamanho das amostras e tamanho máximo da amostra.
Um gráfico com as probabilidades de se ter sucesso em uma análise hipergeométrica de diferentes tamanhos amostrais.