Traduções desta página:

Ferramentas do usuário

Ferramentas do site


05_curso_antigo:r2011:alunos:trabalho_final:micael:start

Micael Eiji Nagai

img_4972ps.jpg

Mestrando em Ecologia, Instituto de Biologia, Unicamp. O título da minha tese é “Biologia populacional e reprodutiva de Exogone (Exogone) breviantennata Hartmann-Schröder, 1959 (Polychaeta: Exogoninae)”, orientado pela Profa. A. Cecília Z. Amaral.

Meus Exercícios

Proposta do Trabalho Final

Proposta A

Gerar uma função que calcula diferentes modelos de regressões (linear, quadrática, cúbica e segmentada) para um mesmo conjunto de variáveis. Esta função deve calcular também o critério de Akaike modificado por fatores de correção (AICc), a diferença entre o AIC entre os modelos e o peso de Akaike. Gerando os gráficos de cada modelo.

Comentários da Proposta Principal

Função interessante e de aplicabilidade geral. Boa idéia. Tenha claro como os dados entrarão na função. O output está bem definido.

Gabriel

Proposta B

Gerar uma função que realiza uma regressão segmentada (piecewise linear regression).

Comentários

Creio que essa está bem simples, pode seguir com a principal.

Gabriel

Trabalho Final

Função da proposta A

################# Trabalho Final - Construção de Função #####################
### Micael Eiji Nagai ###

# Função que calcula as regressões linear, quadrática, cúbica e segmentada (borken-stick) para um mesmo conjunto de dados
# Os objetos de entrada são dois vetores de dados numéricos
# Como saida retorna um objeto da classe data.frame com os valores de coeficientes, soma de quadrados dos resíduos, 
# 	o valor de AIC de cada modelo, valor da diferença de AIC (di) e o peso de AIC (wi).
# A função gera gráficos com as linhas de tendências para cada modelo.

mod.regr=function(lx, ly, nomex="varx",nomey="vary",na.val="NA", AICc=FALSE, log10=FALSE, save.img=FALSE)

{
	#########################################
	########## valores de x e y #############
	
	varx=lx
	vary=ly

	### Designando valores de NA diferentes de NA
	if(na.val!="NA") 
	{
		varx[varx==na.val]=NA
		vary[vary==na.val]=NA
	}
	
	### Retirando os NA's
	nax=!is.na(varx)
	nay=!is.na(vary)
	naxy=nax&nay
	n.nax=length(varx)-sum(nax)
	n.nay=length(vary)-sum(nay)
	n.naxy=length(varx)-sum(naxy)
	varx=varx[naxy]
	vary=vary[naxy]
		
	cat("\n\n Foram encontrados",n.nax,"NA's da variável x (", nomex,") e",n.nay,"da variável y (",nomey,"),\n sendo excluidos",n.naxy,"conjuntos de dados.\n\n\n")
	

	if( log10==TRUE)	{
		varx=log(varx,base=10)
		vary=log(vary,base=10)
	}
	
	#######################################
	########## modelos da regressão #######
	
	mod.l=lm(vary~varx)
	mod.q=lm(vary~varx+I(varx^2))
	mod.c=lm(vary~varx+I(varx^2)+I(varx^3))
	
		### Achando o break point
	val.x=sort(unique(varx)) 
	rss=rep(NA,each=length(val.x))

	for(i in 1:length(val.x)){
		m=lm(vary~(varx*(varx<val.x[i])+varx*(varx>=val.x[i])))
		s=summary(m)
		rss[i]=sum(s$residuals^2)
		
	}
	rss.minimo=min(rss)
	bp.pos=match(rss.minimo,rss) #localizando a posição do menor erro residual
	bp=val.x[bp.pos] #o ponto de x que possui uma descontinuidade (break-point)
	
		### Modelo do broken - stick 
			### coef1+coef2(bp-x)(para x<bp)+coef3(x-bp)(para x>=bp)
			### a1= coef(mod.bs)[1]+coef(mod.bs)[2]*bp
			### b1=-coef(mod.bs)[2]
			### a2= coef(mod.bs)[1]-coef(mod.bs)[3]*bp
			###b2=coef[3]
	lhs = function(x) ifelse(x < bp,bp-x,0)
	rhs = function(x) ifelse(x < bp,0,x-bp)
	mod.bs = lm(vary ~ lhs(varx) + rhs(varx))
	
	
		### Switching regression
	mod.ds=lm(vary~varx*(varx<bp)+varx*(varx>=bp))
	
	
		
	### Separando os coeficientes e os coeficientes de regressão
	#a1, a2, b1, b2, b3, bp, r2 ajustado
	coef.l=round(	as.numeric(
				c(coef(mod.l)[1],NA,coef(mod.l)[2],NA,NA,NA,summary(mod.l)[9])
		),	3)
	
	coef.q=round(	as.numeric(
			c(coef(mod.q)[1],NA, coef(mod.q)[2:3],NA,NA,summary(mod.q)[9])
		),	3)
		
	coef.c=round(	as.numeric(
			c(coef(mod.c)[1],NA,coef(mod.c)[2:4],NA,summary(mod.c)[9])
		),	3)
	
	coef.bs=round(	as.numeric(
			c( coef(mod.bs)[1]+coef(mod.bs)[2]*bp,NA,-coef(mod.bs)[2],coef(mod.bs)[3],NA,bp,summary(mod.bs)[9])
		)	,3)
		
	coef.ds=round(	as.numeric(
			c(coef(mod.ds)[1]+coef(mod.ds)[3],coef(mod.ds)[1],coef(mod.ds)[2]+coef(mod.ds)[5],coef(mod.ds)[2],NA,bp,summary(mod.ds)[9])	
		)	,3)

		
	### Valores de akaike, diferenca de akaike e peso de akaike
	
	if(AICc==TRUE){
		library(AICcmodavg)
		
		akaike=round(c(
					AICc(mod.l),AICc(mod.q),AICc(mod.c),AICc(mod.bs),AICc(mod.ds)
					)	, 3)
		cat("Foi utilizado o critério de akaike modificado para pequenas amostras - AICc\n\n\n")
	}
	else{
		akaike=as.vector(round(AIC(mod.l,mod.q,mod.c,mod.bs,mod.ds)[[2]],3))
		cat("Foi utilizado o critério de akaike - AIC\n\n\n")
	}
	
	min.aic=min(akaike)
	di=akaike-min.aic
	wi=round((exp(-0.5*(di))/sum(exp(-0.5*(di)))),3)
	
	### tabela de resultados
	tab.res=data.frame(
					linear=c(coef.l,akaike[1],di[1],wi[1]),
					quadratico=c(coef.q,akaike[2],di[2],wi[2]),
					cubico=c(coef.c,akaike[3],di[3],wi[3]),
					broken=c(coef.bs,akaike[4],di[4],wi[4]),
					doisSeg=c(coef.ds,akaike[5],di[5],wi[5])
					)

	rownames(tab.res)=c("a1","a2","b1","b2","b3","bp","r2","AIC","Dif. AIC","wi")
	
	##############################################
	################# Gráficos ###################
	
	
	### Salvando
	
	if(save.img==TRUE){
		nomearq=paste(deparse(substitute(lx)),deparse(substitute(ly)))
		
		png(file=paste(nomearq,"%02d.jpg"),width=1024,height=768,unit="px",res=150,restoreConsole=TRUE)
		
			par(mfrow=c(2,3),tcl=0.2,bty="l",cex.main=1.2,cex.lab=1.3,cex.axis=1.2)	
			###### gráfico do modelo linear
			plot(vary~varx,xlab=nomex,ylab=nomey,main="Linear")
			abline(mod.l,col="red",lwd=2)			
			###### gráfico do modelo quadrático
			plot(vary~varx,xlab=nomex,ylab=nomey,main="Quadrático")
			curve(mod.q$coef[1]+mod.q$coef[2]*x+mod.q$coef[3]*x^2,col="red",lwd=2,add=TRUE)
			###### gráfico do modelo cúbico
			plot(vary~varx,xlab=nomex,ylab=nomey,main="Cúbico")
			curve(mod.c$coef[1]+mod.c$coef[2]*x+mod.c$coef[3]*x^2+mod.c$coef[4]*x^3,add=TRUE,col="red",lwd=2)			
			###### gráfico do modelo broken stick
			py = mod.bs$coef[1]+mod.bs$coef[2]*lhs(val.x)+mod.bs$coef[3]*rhs(val.x)				
			plot(vary~varx,xlab=nomex,ylab=nomey,main="Broken-stick",font.main=3)
			lines(val.x,py,col="red",lwd=2)
			abline(v=bp,lty=5)			
			######### Dois segmentos
			plot(vary~varx,xlab=nomex,ylab=nomey,main="Dois segmentos")
			abline(v=bp,lty=5)
			segments(min(val.x),(mod.ds$coef[1]+mod.ds$coef[3])+(mod.ds$coef[2]+mod.ds$coef[5])*min(val.x),
				bp,(mod.ds$coef[1]+mod.ds$coef[3])+(mod.ds$coef[2]+mod.ds$coef[5])*bp,col="red", lwd=2)
			segments(max(val.x),mod.ds$coef[1]+mod.ds$coef[2]*max(val.x),
			bp,mod.ds$coef[1]+mod.ds$coef[2]*bp,col="red",lwd=2)


		dev.off()
	}
	
	####### Plotando os gráficos #######
	
	x11()
	par(mfrow=c(2,3),tcl=0.2,bty="l",cex.main=1.2,cex.lab=1.3,cex.axis=1.2)
	
	###### gráfico do modelo linear
	plot(vary~varx,xlab=nomex,ylab=nomey,main="Linear")
	abline(mod.l,col="red",lwd=2)
	
	###### gráfico do modelo quadrático
	plot(vary~varx,xlab=nomex,ylab=nomey,main="Quadrático")
	curve(mod.q$coef[1]+mod.q$coef[2]*x+mod.q$coef[3]*x^2,col="red",lwd=2,add=TRUE)
	
	###### gráfico do modelo cúbico
	plot(vary~varx,xlab=nomex,ylab=nomey,main="Cúbico")
	curve(mod.c$coef[1]+mod.c$coef[2]*x+mod.c$coef[3]*x^2+mod.c$coef[4]*x^3,add=TRUE,col="red",lwd=2)
	
	###### gráfico do modelo broken stick
	py = mod.bs$coef[1]+mod.bs$coef[2]*lhs(val.x)+mod.bs$coef[3]*rhs(val.x)
		
	plot(vary~varx,xlab=nomex,ylab=nomey,main="Broken-stick",font.main=3)
	lines(val.x,py,col="red",lwd=2)
	abline(v=bp,lty=5)
	
	######### Dois segmentos
	plot(vary~varx,xlab=nomex,ylab=nomey,main="Dois segmentos")

	abline(v=bp,lty=5)
	segments(min(val.x),(mod.ds$coef[1]+mod.ds$coef[3])+(mod.ds$coef[2]+mod.ds$coef[5])*min(val.x),
		bp,(mod.ds$coef[1]+mod.ds$coef[3])+(mod.ds$coef[2]+mod.ds$coef[5])*bp,col="red", lwd=2) #segmento da esquerda
	segments(max(val.x),mod.ds$coef[1]+mod.ds$coef[2]*max(val.x),
	bp,mod.ds$coef[1]+mod.ds$coef[2]*bp,col="red",lwd=2) # segmento da direita

	
	
		
	return(tab.res)
}	
	

Arquivo da função

Página de help da função

mod.regr                package:nenhum                R Documentation

Modelos de regressões linear, quadrático, cúbico e segmentado.

Description:

     Utilizando dois vetores de dados a função calcula os modelos linear, quadrático, cúbico e segmentado. Plotando gráficos de cada modelo com a respectiva linha de tendência

Usage:

     mod.regr=function(lx, ly, nomex="varx",nomey="vary",na.val="NA", AICc=FALSE, log10=FALSE, save.img=FALSE)

Arguments:

 lx: vetor com os dados da variável independente (preditora)
 
 ly: vetor com os dados da variável dependente (resposta)
 
 nomex: nome da variável x, será usada para a plotagem do gráfico
 
 nomey: nome da variável y
 
 na.val: valor que será considerado NA, fora o próprio NA
 
 AICc: se TRUE calcula o valor do AICc, ao invés do AIC. Caso seja FALSE calcula o AIC
 
 log10: transforma os valores de x e y em log na base 10
 
 save.img: salva o gráfico gerado
 

Details:

    O AICc é o valor de Akaike com correções para amostras pequenas.

Value:

   Retorna um data frame contendo os valores, para cada modelo, do:
 
	 intercepto, inclinação e o break-point (para a regressão segmentada);
	 coeficiente de regressão ajustado;
	 valores de Akaike (AIC);
	 diferença de Akaike (delta i) nesta função com a abreviação Dif. AIC;
	 e o peso de Akaike (wi).
	 
	Gera gráficos para cada modelo com a sua respectiva linha de tendência.


Warning:

      Caso não tenha o pacote AICcmodavg instalado, a função irá emitir um erro
	  "Erro em library(AICcmodavg) : não há nenhum pacote chamado 'AICcmodavg'"


Note:

	  Para o cálculo do AICc é necessário estar instalado o pacote AICcmodavg
    

Author(s):

     Micael Eiji Nagai
     micaelnagai@gmail.com

References:

     Burnham, K.P. & Anderson, D.R. (2002). Model selection and multimodel inference: a pratical infromation-theoretic approach. 2nd ed. Springer
     Crawley, M.J. (2007). The R book. Wiley.
     Faraway, J.J. (2002). Practical regression and anova using R. (cran.r-project.org/doc/contrib/Faraway-PRA.pdf)
     Katsanevakis, S.; Legaki, M.T.; Karlou-Riga, C.; Lefkaditou, E.; Dimitriou, E. & Verriopoulos, G. (2007). Information-theory approach to allometric growth of marine organisms. Mar Bio, 151:949-959.
	 
	 
See Also:

     lm(), segmented()

Examples:

	 #Exemplo 1, verificando a relação entre a largura e o comprimento da petala, dados do data frame iris.
	 largura=iris$Petal.Width
	 comprimento=iris$Petal.Length
	  
	 mod.regr(comprimento,largura,nomex="Comprimento",nomey="Largura")

	 
	 #Exemplo2, relação entre o assassinato e assalto nos estados dos EUA (data frame USArrests), foram incluidos valores de NA e valor 0 que representa NA
	 
	assalto=USArrests$Assault
	assassinato=USArrests$Murder
	assalto[15]=NA
	assassinato[4]=0
		
	 mod.regr(assalto,assassinato,na.val="0")
05_curso_antigo/r2011/alunos/trabalho_final/micael/start.txt · Última modificação: 2020/08/12 06:04 (edição externa)