==== Função idarea====
{{:bie5782:01_curso_atual:alunos:trabalho_final:erika.coelho:funcao.csv|}}
idarea <- function(df) {
#Verificando os parametros
if(class(df)!="data.frame") #se o arquivo não for data.frame
stop("Arquivo não é um data.frame") #retorna esta mensagem
if(df!=(c(df$Ptt,df$Date, df$Latitude, df$Longitude, df$Quality))) #se o arquivo não tiver as colunas Ptt, Date, Latitude, Longitude
stop("Arquivo não possui as colunas necessárias") #retorna esta mensagem
#Acessando pacotes necessários
require(tidyverse)
require(lubridate)
require(rgdal)
require(sp)
require(dplyr)
df<- filter(df, Quality %in% c("1", "2", "3","A","B")) #tirando posição Z
#convertendo a coluna Date em as.POSIxct e criando uma nova coluna só com dia/mes/ano
df$Date<- as.character(df$Date) #convertendo a coluna Date em character
df$Days <- sapply(strsplit(df$Date, split=' ', fixed=TRUE), function(x) (x[2])) #separando a coluna Date (ano/mes/dia hora/min/seg) em uma nova coluna Days (ano/mes/dia)
df$Days <- as.POSIXct(df$Days, format = "%d-%b-%Y",tz = "GMT",usetz = TRUE) #convertendo a coluna Days em as.POSIXct
df$Date <- as.POSIXct(df$Date, format = "%H:%M:%S %d-%b-%Y",tz = "GMT",usetz = TRUE) #convertendo a coluna Date em as.POSIXct
#criando coluna 0-40 dias e 41-x dias desde a primeira transmissão do TAG de cada animal----
#Past_Thresdold 0 e 1
df<-df%>% #chama o df
group_by(Ptt) %>% #pelo grupo/coluna Ptt
mutate(Threshold = min(Days) + days(40)) %>% #cria coluna Threshold pegando a menor data de cada Ptt e soma 40 dias
ungroup() %>% #retira o "grupo"
mutate(Past_Threshold = Days > Threshold) #cria coluna Past_Threshold, TRUE (>40 dias) e FALSE (0 <=40 dias)
df$Past_Threshold<-as.numeric(df$Past_Threshold) #transforma os valores TRUE e FALSE em numeros 0-1
#0 False(0 < = 40), 1 True ( > 40)
ang.abs <- function(x) {#calculando o angulo absoluto entre Lat e Long
x1 <- x[-1, ]
x2 <- x[-nrow(x), ]
dist <- c(sqrt((x1$Latitude - x2$Latitude)^2 + (x1$Longitude - x2$Longitude)^2), NA)#calculando a distância entre as localizações, se não tiver pelo menos 2 localizações sucessivas retorna NA
R2n <- (x$Latitude - x$Latitude[1])^2 + (x$Longitude - x$Longitude[1])^2 #calculando o valor de deslocamento bruto entre a relocação atual e a primeira relocação da rota
dt <- c(unclass(x1$Date) - unclass(x2$Date), NA)#calculando o tempo decorrido entre as localizações, se nao tiver datas sucessivas, retorna NA
dx <- c(x1$Latitude - x2$Latitude, NA)#calculando o valor do movimento na direção x entre as localizações, se nao tiver pelo menos 2 localizações sucessivas, retorna NA
dy <- c(x1$Longitude - x2$Longitude, NA)#calculando o valor do movimento na direção y entre as localizações, se nao tiver pelo menos 2 localizações sucessivas, retorna NA
abs.angle <- ifelse(dist < 1e-07, NA, atan2(dy, dx))#calculando o angulo entre os movimentos pelas localizações, se nao tiver pelo menos 2 localizações sucessivas, retorna NA
so <- cbind.data.frame(dx = dx, dy = dy, dist = dist,
dt = dt, R2n = R2n, abs.angle = abs.angle) #juntando todos os objetos criados em um data.frame chamado so
}
df1<- cbind(df,ang.abs(df)) #juntando o df com o resultado do angulo absoluto
ang.rel <- function(df, slsp = c("remove",
"missing")) {#calculando o angulo relativo, slsp controla os valores retornados para realocações (se tiver localizações em um mesmo local), missing: um valor ausente é retornado para determinada realocação, remove: calcula o angulo entre as localizações próximas diferentes
ang1 <- df1$abs.angle[-nrow(df1)]#cria ang1, onde é a coluna abs.angle menos a primeira linha sucessivament
ang2 <- df1$abs.angle[-1]# cria ang2, onde é a coluna abs.angle menos 1 e sucessivamente
slsp <- match.arg(slsp)#conferindo combinações de valores slsp
if (slsp == "remove") {#se slsp for escolhido como remove
dist <- c(sqrt((df1[-nrow(df1), "Latitude"] - df[-1, "Latitude"])^2 +
(df1[-nrow(df1), "Longitude"] - df[-1, "Longitude"])^2), NA) #calcula a distancia
wh.na <- which(dist < 1e-07) #cria objeto wh.na onde a distancia for menor que 1e-07
if (length(wh.na) > 0) {#se o comprimento de wh.na for menor que 0
no.na <- (1:length(ang1))[!(1:length(ang1)) %in% #cria o objeto no.na
wh.na]
for (i in wh.na) {#então roda por wh.na
indx <- no.na[no.na < i]#criando o objeto indx, com valores no.na menores que i ao longo que for rodado
ang1[i] <- ifelse(length(indx) == 0, NA, ang1[max(indx)])#cria o objeto ang1, onde se o comprimento de indx for TRUE para valor 0, retorne NA, caso for FALSE retorne o valor máximo do ang1
}
}
}
res <- ang2 - ang1#subtraindo objeto ang2 por ang1 e resultando em res
res <- ifelse(res <= (-pi), 2 * pi + res, res)#se res for TRUE para menor ou igual a - pi, retorne 2*pi+res, FALSE retorne res
res <- ifelse(res > pi, res - 2 * pi, res)#se res for TRUE para maior que pi, retorne res - 2*pi, se FALSE retorne res
return(c(NA, res))#retornando res
}
rel.angle<-abs(ang.rel(df1)) #tornando valores absolutos
rel.angle[is.na(rel.angle)] <- 0 #substituindo NA por 0
rel <- cbind.data.frame(rel.angle=rel.angle)#juntando ang. relativo e ang. absoluto em rel, tornando-o em data.frame
df2<-cbind(df1,rel) #juntando df1 com o rel
categ <- function(df)
{
#criando threshold dos angulos
df2$thr_angle[df2$rel.angle >= 1.01] <- "a" #AR e AA, valores próximos de 1, rota SINUOSA
df2$thr_angle[df2$rel.angle <=1.00] <- "b" #AM, valores próximos de 0, rota RETILINEA
df2$thr_angle[is.na(df2$thr_angle)] <- "a" #substituindo NA por 0
latcat<-cut(df2$Latitude, c(-Inf,-40,Inf),labels=c(1,0))#criando limite -40.0000 na latitude
cod<-paste(df2$Past_Threshold , df2$thr_angle, latcat, sep="-")#juntando a coluna Past_Threshold e thr_angle em uma nova coluna chamada cod, com separação "-"
ct <- cbind.data.frame(latcat=latcat,cod=cod)#juntando o limite de latitude latcat com a coluna cod em um data.frame chamado ct
}
df3<-cbind(df2,as.data.frame(categ(df2)))#tornando o df2 em data.frame chamado df3
if(df3$Latitude >= -22.000){ #se a latitude da primeira posição for até -22.000 o transmissor foi implantado na AR
#criando colunas AM, AA, AR de acordo com Past_Threshold (1-0), thr_angle(a-b) e limite de latitude (0-1).
df3$area[df3$cod == "1-a-0"] <- "AM"#criando a coluna AM (area de migração)
df3$area[df3$cod == "1-a-1"] <- "AA"#criando a coluna AA (area de alimentação)
df3$area[df3$cod == "1-b-0"] <- "AM"#criando a coluna AM (area de migração)
df3$area[df3$cod == "1-b-1"] <- "AM"#criando a coluna AM (area de migração)
df3$area[df3$cod == "0-a-0"] <- "AR"#criando a coluna AR (area de reprodução)
df3$area[df3$cod == "0-b-0"] <- "AR"#criando a coluna AR (area de reprodução)
}
if(df3$Latitude <=-45.000){#se a latitude da primeira posição for além de -45.000 o transmissor foi implantado na AA
df3$area[df3$cod == "1-a-0"] <- "AR"#criando a coluna AR (area de reprodução)
df3$area[df3$cod == "1-a-1"] <- "AA"#criando a coluna AA (area de alimentação)
df3$area[df3$cod == "1-b-0"] <- "AM"#criando a coluna AM (area de migração)
df3$area[df3$cod == "1-b-1"] <- "AA"#criando a coluna AA (area de alimentação)
df3$area[df3$cod == "0-a-0"] <- "AM"#criando a coluna AM (area de migração)
df3$area[df3$cod == "0-b-0"] <- "AR"#criando a coluna AR (area de reprodução)
}
df3$dt = NULL; df3$dx =NULL; df3$dy = NULL; df3$dist = NULL ; df3$latcat = NULL; df3$cod = NULL; df3$R2n = NULL; df3$rel.angle = NULL; df3$abs.angle = NULL ; df3$Days = NULL; df3$Past_Threshold = NULL ; df3$Threshold = NULL #retirando as colunas desnecessárias
return(df3)
}
==== Help ====
idarea package:unkown R Documentation
Separação áreas de reprodução, migração e alimentação
Description:
~~ A função "idearea" é utilziada para separação das áreas de reprodução, migração e alimentação por transmissão satelital pelo sistema ARGOS. Este é especilamente indicado para estudos em populações de baleias-jubarte do Hemisfério Sul. ~~
Usage:
~~ idarea(df) ~~
Arguments:
~~ df - data.frame contendo pelo menos as colunas Ptt, Date, Quality, Latitude e Longitude ~~
Details:
~~ Dados do sistema ARGOS possibilita a análise de movimentos dos animais. Eles contém a descrição da data e hora, latiutode e longitude e qualidade de cada localização por animal. ~~
~~ A função identifica as três áreas (reprodução = AR, migração = AM e alimentação = AA), podendo ser aplicada em diferentes populações e de acordo com a área de onde foram implantados os transmissores, na área de reprodução ou alimentação. ~~
Value:
~~ df - o data.frame do input terá como resultado uma nova coluna com a especificação da área (AR, AM e AA) identificada de acordo com sua trajetória para cada animal. ~~
Warning:
~~ Se o transmissor foi implantado na AR, irá calcular a partir desta área e ignorar o pressuposto da AA. Se o transmissor foi implantado na AA, irá calcular a partir desta área e ignorar o pressuposto da AR. ~~
Author:
~~ Érika Coelho - Mestranda pelo Programa de Pós-graduação de Ecologia na Universidade Federal de Juiz de Fora (UFJF). ~~
References:
~~ WINN & REICHLEY, 1985; KATONA & WHITEHEAD, 1981; International Whaling Comission, 1998; GARRIGUE et al. 2010; ARGOS, 1990. ~~
Examples:
~~ x <- idarea(df, area = T) ~~