====== Sergio Rhein Schirato======
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:mar_0632.jpg|}}
Departamento de Fisiologia
[[.:exec]]
====Exercícios======
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:exercicio1_r.txt|}}
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:exercicio_4.2f.txt|}}
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:exercicio_4.3f.txt|}}
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:exercicio_4.4.txt|}}
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:exercicio_4.5.txt|}}
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:exercicio_5.1.txt|}}
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:exercicio_5.2.txt|}}
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:exercicio_5.3f.txt|}}
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:exercicio_106.2.1.txt|}}
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:exercicio_7.2.r|}}
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:exercicio_7.2.a.txt|}}
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:exercicio_7.2.b.f.txt|}}
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:exercicio_7.2.cf.txt}}
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:exercicio_8.1.txt|}}
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:exercicio_8.2.txt|}}
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:exercicio_109.2.txt|}}
====Propostas de função====
--- //[[diogro@gmail.com|Diogo Melo]] 2017/06/05 17:06//
Acho que ambas as propostas precisam de mais detalhes para serem avaliadas.
Comento abaixo.
===Proposta de Função A===
A função irá produzir as séries de Fourier para qualquer função polinomial dada pelo usuário, permitindo a sua transformação em uma série de senos e cossenos. O produto desta função será de fundamental importância para a subsequente efetivação da Transformada Discreta de Fourier, quando esta se fizer necessária.
Este processo possibilita uma melhor compreensão do comportamento de séries de dados, decompondo-as em diversas harmônicas independentes e facilitando a segregação de eventuais ruídos.
Tenho hoje utilizado as séries de Fourier (e sua transformada) na análise das mudanças da variabilidade cardíaca seguida à descompressão em indivíduos após exposição a ambiente hiperbárico. Esta função automatizará parte do processo.
==Histórico==
Jean Baptiste Joseph Fourier (1768-1830) desenvolveu suas séries ao estudar a propagação de calor em corpos sólidos. Admitindo que essa propagação dar-se-ia por ondas de calor e, considerando que a forma mais simples de uma onda é uma função senoidal, Fourier demonstrou que qualquer função pode ser decomposta como uma soma de senos e cossenos, com amplitudes e fases calculadas. Este trabalho dá origem à Transformada Discreta de Fourier e, posteriormente, à Transformada Rápida de Fourier, hoje utilizada nas mais diversas áreas do conhecimento.
==Argumentos da função==
- fun_entrada: qualquer função escrita na forma de um polinômio
- k: número de coeficientes gerados pela função
- lim_inf: limite inferior de integração (padrão: -pi)
- lim_sup: limite superior de integração (padrão: pi)
==Retorno da Função==
Um dataframe contendo uma série de k coeficientes, calculados entre os limites definidos de integração, e divididos em duas colunas: (i) senos; (ii) cossenos. Adicionalmente a função retornará um gráfico contendo o a curvatura da função original e a curvatura da função escrita em termos de senos e cossenos para k coeficientes.
--- //[[diogro@gmail.com|Diogo Melo]] 2017/06/05 17:06//
Não entendi se a ideia é fazer uma série de Fourier analítica ou computacional. A função só vai funcionar apra polinomios? Não seria mais legal fazer uma aproximação computacional para qualquer função? Se for computacional, sugiro usar um pacote pronto e focar na visualização.
Nesse caso, Seria legal incluir um gráfico a função original e da aproximação de Fourier para diferentes tamanhos da série de fourier.
===Proposta de Função B===
A função gerará o expoente de Hurst para um dado vetor numérico dado pelo usuário. O expoente de Hurst é uma medida de auto-correlação de uma série numérica, variando entre 0 e 1. Um resultado próximo de 0 representa uma grande persistência da série na proximidade de um ponto, enquanto um resultado próximo de 1 representa uma grande tendência de manutenção de direcionamento (crescimento ou decrescimento). O resultado 0,5 representa a completa aleatoriedade dos números. Tenho hoje usado o expoente de Hurst em algoritmos para operações em mercados financeiros.
==Histórico==
O expoente (ou coeficiente, como também é conhecido) de Hurst foi criado pelo engenheiro Harold Edwin Hurst (1880–1978) na década de 1960. Após anos efetuando análises de variações pluviométricas e níveis de reservatórios, Hurst percebeu que registros passados influenciavam de alguma forma observações correntes. No final da década de 1990 e início dos anos 2000, Benoît Mandelbrot (1924–2010) identificou a íntima relação em o expoente de Hurst e as dimensões fractais estudadas por ele. Hoje praticamente todos os trabalhos que envolvam a geração de séries aleatórias se utilizam do expoente de Hurst.
==Argumentos da função==
dados: um vetor numérico de qualquer extensão.
==Retorno da Função==
Um objeto denominado Hurst, que representará o expoente de Hurst associado ao vetor dado. Adicionalmente a função retornará um gráfico cujo eixo “x” será a o logaritmo da quantidade de elementos do vetor e o eixo “y” será o logaritmo da divisão entre a amplitude da série pelo desvio-padrão.
--- //[[diogro@gmail.com|Diogo Melo]] 2017/06/05 17:06//
Bacana, mas um pouco simples. Existe alguma outra modificação do expoente de Hurst? Talvez a função possa fazer o calculo num vetor grande usando um esquema de "sliding window", pra ver se o expoente muda ao longo do vetor analizado.
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:help_da_funcao_hurst.txt|}}
{{:bie5782:01_curso_atual:alunos:trabalho_final:sergio.schirato:trabalho_final.r|}}