====== Myldred Ometto Spinelli ======
{{:01_curso_atual:alunos:trabalho_final:myldred.spinelli:myl.jpg?200|}}
Mestranda em Ecologia - Instituto de Biociências da USP. Orientada do Prof. Dr. Luciano Martins Verdade com o projeto “Uso do espaço e dieta de felídeos de pequeno porte em paisagem silvicultural do Estado de São Paulo, Brasil”.
====== Meus exercícios ======
Linque para a página com meus exercícios resolvidos [[.:exec]]
====== Plano A ======
Criar uma função chamada dieta que calcule a frequência de ocorrência (FO%) e a porcentagem de ocorrência (PO%)
de cada item consumido por cada espécie estudada, assim como a amplitude de nicho (Índice de Levin) para cada espécie e a sobreposição de nicho (Índice de Pianka) entre as espécies.
PO, FO, AMPLITUDE, SOBREPOSIÇÃO -> argumentos da função.
ENTRADA: matriz onde as linhas seriam as espécies estudadas e a colunas seriam os itens alimentares (i1,i2,i3,etc) e o número de fezes em que o determinado item foi encontrado (n1,n2,n3,etc).
A função encurtaria as diversas contas que precisariam ser feitas neste tipo de análise, 'entrando' uma matriz com os dados coletados e 'devolvendo' como resultado os cálculos ditos acima, sendo 'devolvidos' também um grafico para FO e PO (espécies x frequência de ocorrencia de cada item) (espécies x porcentagem de ocorrencia de cada item). A sobreposição de nicho poderia, se possível, ser representada também pelo Diagrama de Venn.
SAÍDA:
- FO e GRÁFICO (espécies x frequência de ocorrencia de cada item)
- PO e GRÁFICO (espécies x porcentagem de ocorrencia de cada item)
- AMPLITUDE: B e BA (amplitude e amplitude padronizada)
- SOBREPOSIÇÃO: O (sobreposição) e diagrama de venn (se possível)
====== Plano B ======
CALCULADORA DE BARMAN
Criar uma função que devolva uma lista do que o barman irá precisar para uma noite de trabalho de acordo com o número de convidados (x), a duração da festa (horas) e os drinks escolhidos.
Eu iria criar um banco de dados com as receitas (quantidades) de diversos drinks clássicos. Primeiramente, seria necessário digitar o nome da função para que ela retornasse o banco de dado com as receitas que foi criado para que o barman escolhesse quais drinks gostaria de servir em sua festa.
Na função, através dos argumentos, seria possível escolher quais drinks seriam utilizados e em que proporção. O padrão seria que todos os drinks seriam calculados em iguais proporções. Lembrando que o resultado seriam de drinks clássicos, mas por se tratar de uma função do R, seria possível modificá-la incluindo ou excluindo itens de sua preferência.
Base seria: pessoas costumam beber y drinks em z horas.
No argumento: a ordem do drinks dirá sua preferência. Desta forma, se a divisão for um número quebrado, a função irá ciclar os drinks começando do primeiro para o último.
Dúvida: como criar a base de dados com as receitas.
A proposta A é interessante e factível, e será um bom desafio para implementar como função. Sugiro seguir com ela. Você pode começar implementando a função para o cálculo dos índices para uma espécie somente. Se conseguir criar esta função facilmente você pode generalizar para múltiplas espécies e, finalmente, calcular os índices de sobreposição de nicho. A proposta B parece interessante, mas eu deixaria os drinks para alguma outra ocasião... :-)
----//[[lwedekin@yahoo.com.br| Leonardo]]//
====== Help da função ======
indice.dieta package: nenhum R Documentation
Índice de dieta.
Description:
indice.dieta calcula índices relacionados a dieta, como frequência de ocorrência (FO%), porcentagem de ocorrência (PO%), amplitude de nicho (índice de Levin) e amplitude de nicho padronizada (índice de Hulbert).
O índice lê tabelas padrões utilizadas nesse tipo de estudo, onde uma das colunas deve indicar a quantidade de cada item encontrado nas fezes (i1,i2,i3,etc) e a outra coluna deve indicar o numero de vezes que determinado item foi encontrado nas fezes (n1,n2,n3,etc) - é preciso que exista o título "i" e "n" nas colunas.
As linhas da matriz contem os diferentes itens alimentares encontrados nas fezes da espécie estudada - se estas linhas estiverem nomeadas, os gráficos de saida serão mais informativos, entretanto, se não estiverem nomeadas, os gráficos irão numerá-las apenas.
Usage:
indice.dieta(x, indice)
Arguments:
x tabela de entrada - deve conter uma coluna nomeada com "i" e outra nomeada com "n"
indice especificar o índice que deseja calcular - opções: "frequencia", "porcentagem", "amplitude" e "amplitude.padronizada" (os argumentos precisam ser escritos entre aspas " ")
Details:
É necessário que as colunas da tabela de entrada sejam nomeadas com "n" e "i" independente da ordem e isto deve ser especificado quando a tabela for enviada ao R. Veja o exemplo: objeto<-read.table(file="tabela.csv", sep=";", header=TRUE).
É necessário que o argumento seja escrito entre aspas " ".
É recomendado (porém não é exigido) que as linhas da matriz sejam nomeadas, pois os gráficos de saída serão mais informativos acerca da dieta da espécie estudada. Veja o exemplo: objeto<-read.table(file="tabela.csv", sep=";", header=TRUE, row.names=1).
Value:
indice.dieta retorna valores e gráficos com os seguintes componentes:
porcentagem porcentagem de ocorrência dos itens consumidos pela espécie estudada - valores em porcentagem - e gráfico do tipo barplot
frequencia frequencia de ocorrência dos itens consumidos pela espécie estudada - valores em porcentagem - e gráfico do tipo barplot
amplitude amplitude de nicho calculada pelo Índice de Levin
amplitude.padronizada amplitude de nicho padronizada calculada pelo Índice de Hulbert - valores de 0 a 1
Author:
Myldred Ometto Spinelli
myldred.spinelli@gmail.com
myldred.spinelli@usp.br
References:
HURLBERT, S.H. The measurement of niche overlap and some relatives. Ecology, Tempe, v.59, n.1, p.67-77, jan. 1978.
KREBS, C.J. Ecological methodoly. New York: Harper Collins Publishers, 1989. 581 p.
Examples:
# Baixe o arquivo tabela.csv para rodar os exemplos abaixo:
tabela<- read.table(file="tabela.csv", sep=";", header=TRUE, row.names=1) # é preciso especificar que a primeira linha é o título das colunas (header=TRUE) e é recomendável que a primeira coluna contenha os nomes das linhas (itens alimentares) (row.names=1).
indice.dieta(tabela,"porcentagem") # retorna os valores das porcentagens de ocorrência e o gráfico para os diferentes itens alimentares
indice.dieta(tabela, "frequencia") # retorna os valores das frequencias de ocorrência e o gráfico para os diferentes itens alimentares
indice.dieta(tabela, "amplitude") # retorna o valor da amplitude de nicho
indice.dieta(tabela, "amplitude.padronizada") # retorna o valor da amplitude de nicho padronizada
====== Código da função ======
#A função calcula índices relacionados a dieta da espécie estudada, como frequência de ocorrência (FO%),
# porcentagem de ocorrência (PO%), amplitude de nicho (índice de Levin) e amplitude de nicho padronizada
#(índice de Hulbert).
#A entrada é uma matriz padrão para esse tipo de estudo, onde uma das colunas deve indicar a quantidade
#de cada item encontrado nas fezes (i1,i2,i3,etc) e a outra coluna deve indicar o numero de vezes que
#determinado item foi encontrado nas fezes (n1,n2,n3,etc) - é preciso que exista o título "i" e "n" nas
#colunas.
#As linhas da matriz contem os diferentes itens alimentares encontrados nas fezes da espécie estudada -
#se estas linhas estiverem nomeadas, os gráficos de saida serão mais informativos, entretanto, se não
#estiverem nomeadas, os gráficos irão numerá-las apenas.
indice.dieta<-function(dados,indice)
{
if (indice=="frequencia")
{
dados$n[is.na(dados$n)] <- 0 #substitui os NA por 0, pois para este tipo de estudo NAs não são valores faltantes, mas sim observações iguais a 0
n<-dados$n #seleciona a coluna onde estão os valores de "n"
N<-sum(dados$n) #valor de "N" é a somatória dos valores de "n"
F=(n/N)*100 #fórmula que calcula a frequencia de ocorrencia
x11() #abre uma janela de grafico
midpts <- barplot(1:length(rownames(dados))) #insere o nome das linhas no eixo x de forma central
barplot((F),ylab="Frequência de ocorrência", ylim=c(0,100)) #grafico de barras onde é mostrado as frequencias de ocorrencia
axis(side=1,labels=rownames(dados), at=midpts, tick=FALSE,las=1) #coloca o nome das linhas (itens alimentares) no eixo x do gráfico. O argumento las=1 diz que o eixo deve ser escrito na horizontal, porém dependendo do número de linhas, é melhor mudar o argumento para las=3 (escrita na vertical)
return(F)
}
if (indice=="porcentagem")
{
dados$i[is.na(dados$i)] <- 0 ##substituo os NA por 0, pois NAs não são valores faltantes, mas sim observações iguais a 0
i<-dados$i #seleciona a coluna onde estão os valores de "i"
I=sum(dados$i) #número de itens alimentares é igual a soma de "i"
P=(i/I)*100 #fórmula da porcentagem de ocorrência
x11() #abro uma janela de gráfico
midpts <- barplot(1:length(rownames(dados))) #insere o nome das linhas no eixo x de forma central
barplot((P), xlab="Itens alimentares", ylab="Porcentagem de ocorrência", ylim=c(0,100)) #gráfico de barras onde é mostrado as porcentagens de ocorrencia
axis(side=1,labels=rownames(dados), at=midpts, tick=FALSE, las=1) #coloca o nome das linhas (itens alimentares) no eixo x do gráfico. O argumento las=1 diz que o eixo deve ser escrito na horizontal, porém dependendo do número de linhas, é melhor mudar o argumento para las=3 (escrita na vertical)
return(P)
}
if (indice=="amplitude")
{
dados$i[is.na(dados$i)] <- 0 ##substituo os NA por 0, pois NAs não são valores faltantes, mas sim observações iguais a 0
i<-dados$i #seleciona a coluna onde estão os valores de "i"
I=sum(dados$i) #número de itens alimentares é igual a soma de "i"
B<-1/(sum((i/I)^2)) # B é a somatória de todos os valores de i/I ao quadrado.
return(B)
}
if (indice=="amplitude.padronizada")
{
dados$i[is.na(dados$i)] <- 0 ##substituo os NA por 0, pois NAs não são valores faltantes, mas sim observações iguais a 0
i<-dados$i #seleciona a coluna onde estão os valores de "i"
I=sum(dados$i) #número de itens alimentares é igual a soma de "i"
B<-1/(sum((i/I)^2)) #calcula a amplitude de nicho
BA<-(B-1)/(I-1) #calcula a amplitude de nicho padronizada
cat("Amplitude de nicho padronizado (valores 0 a 1) \n Valores máximos -> nicho amplo/mínima especialização \n Valores mínimos -> nicho estreito/máxima especialização \n")
return(BA)
}
}
====== Arquivo para download ======
{{:01_curso_atual:alunos:trabalho_final:myldred.spinelli:tabela.csv| tabela }}